98 research outputs found

    Weak associations between pubertal timing and psychiatric and behavioral problems

    Get PDF

    Genetic and environmental underpinnings of spatial abilities and their role in predicting academic achievement and success in STEM

    Get PDF
    Behavior Genetics Association 45th Annual Meeting Abstract: Spatial abilities encompass several factors that are differentiable from general cognitive ability (intelligence). Importantly, spatial abilities have been shown to be significant predictors of many life outcomes, even after controlling for intelligence. Quantitative genetic studies have shown that diverse measures of spatial ability are moderately heritable (30–50 %), although some important aspects of spatial ability such as navigation and map-reading have been neglected. Little is known about the factor structure of spatial measures or their links with academic achievement, especially STEM subjects (science, technology, engineering, mathematics). For these reasons, we launched a program of research creating novel online gamified measures of diverse spatial abilities including mental rotation, spatial visualization, spatial scanning, navigation, and map-reading. We piloted the measures on 100 unrelated individuals; all measures produced good test–retest reliability (0.7 on average). The battery was administered online to 1000 twin pairs (age 19–21) from the UK representative Twins Early Development Study (TEDS). Phenotypically, the results provided some evidence for the multifactorial nature of spatial ability, independent of intelligence, despite substantial correlations among the factors. Univariate genetic analyses yielded moderate heritability for all tests and factors. One of the most interesting findings was that these spatial factors correlated with success in STEM subjects, especially with achievement in mathematics, even after controlling for intelligence, and genetic factors largely accounted for these phenotypic associations TEDS is supported by a program grant to RP from the UK Medical Research Council [G0901245; and previously G0500079], with additional support from the US National Institutes of Health [HD044454; HD059215]. NS and KR are supported by Medical Research Council

    Investigating the genetic and environmental aetiologies of non-suicidal and suicidal self-harm: a twin study

    Get PDF
    BACKGROUND: Self-harm is a major health concern, not only as a signal of distress but also as a strong predictor of later suicide. Self-harm can be further refined into suicidal self-harm (SSH, i.e. suicide attempt) and non-suicidal self-harm (NSSH). Understanding the aetiologies of NSSH and SSH can help inform suicide prevention strategies. Using a twin design, we investigated the phenotypic and aetiological relationships between NSSH and SSH, and their aetiological overlap with mental health problems. METHODS: We analysed data from the Twins Early Development Study using structural equation modelling. At age 21 years, 9063 twins (62.4% female) answered questions related to self-harm. At age 16 years, 19 self- or parent-reported mental health measures were administered, including measures of internalising and externalising problems, psychotic-like experiences and substance abuse. RESULTS: Prevalences for NSSH and SSH were 21.9% and 10.5%, respectively. Additive genetic factors explained half of the variance in NSSH (55%) and SSH (50%), with the rest explained by non-shared environmental factors. Phenotypically, NSSH and SSH were strongly correlated (r = 0.87) with their correlation explained by genetic (57%) and non-shared environmental (43%) factors. We found no evidence that NSSH and SSH differed in their phenotypic and aetiological relationships with mental health measures. CONCLUSION: Our findings suggest no aetiological difference between NSSH and SSH. NSSH and SSH should be regarded as two different ends of a continuum, rather than as two distinct categories

    Weak associations between pubertal development and psychiatric and behavioral problems

    Get PDF
    Pubertal development has been associated with adverse outcomes throughout adolescence and adulthood. However, much of the previous literature has categorized outcome variables and pubertal timing measures for ease of mean difference or odds ratio interpretation. We use a UK-representative sample of over 5000 individuals drawn from the Twins Early Development Study to extend this literature by adopting an individual differences approach and emphasizing effect sizes. We investigate a variety of psychiatric and behavioral measures collected longitudinally at ages 11, 14 and 16, for multiple raters and for males and females separately. In addition, we use two measures of pubertal development: the Pubertal Development Scale at each age, as well as the age of menarche for girls. We found that pubertal development, however assessed, was linearly associated with a range of psychiatric and behavioral outcomes; however, the effect sizes of these associations were modest for both males and females with most correlations between −0.10 and 0.10. Our systematic analysis of associations between pubertal development, and psychiatric and behavioral problems is the most comprehensive to date. The results showing linearity of the effects of pubertal development support an individual differences approach, treating both pubertal development and associated outcomes as continuous rather than categorical variables. We conclude that pubertal development explains little variance in psychiatric and behavioral outcomes (<1% on average). The small effect sizes indicate that the associations are weak and should not warrant major concern at least in non-clinical populations

    The p factor: genetic analyses support a general dimension of psychopathology in childhood and adolescence

    Get PDF
    Background: Diverse behaviour problems in childhood correlate phenotypically, suggesting a general dimension of psychopathology that has been called the p factor. The shared genetic architecture between childhood psychopathology traits also supports a genetic p. This study systematically investigates the manifestation of this common dimension across self‐, parent‐ and teacher‐rated measures in childhood and adolescence. / Methods: The sample included 7,026 twin pairs from the Twins Early Development Study (TEDS). First, we employed multivariate twin models to estimate common genetic and environmental influences on p based on diverse measures of behaviour problems rated by children, parents and teachers at ages 7, 9, 12 and 16 (depressive traits, emotional problems, peer problems, autism traits, hyperactivity, antisocial behaviour, conduct problems and psychopathic tendencies). Second, to assess the stability of genetic and environmental influences on p across time, we conducted longitudinal twin modelling of the first phenotypic principal components of childhood psychopathological measures across each of the four ages. Third, we created a genetic p factor in 7,026 unrelated genotyped individuals based on eight polygenic scores for psychiatric disorders to estimate how a general polygenic predisposition to mostly adult psychiatric disorders relates to childhood p. / Results: Behaviour problems were consistently correlated phenotypically and genetically across ages and raters. The p factor is substantially heritable (50%–60%) and manifests consistently across diverse ages and raters. However, residual variation in the common factor models indicates unique contributions as well. Genetic correlations of p components across childhood and adolescence suggest stability over time (49%–78%). A polygenic general psychopathology factor derived from studies of psychiatric disorders consistently predicted a general phenotypic p factor across development (0.3%–0.9%). / Conclusions: Diverse forms of psychopathology generally load on a common p factor, which is highly heritable. There are substantial genetic influences on the stability of p across childhood. Our analyses indicate genetic overlap between general risk for psychiatric disorders in adulthood and p in childhood, even as young as age 7. The p factor has far‐reaching implications for genomic research and, eventually, for diagnosis and treatment of behaviour problems.

    The genetics of specific cognitive abilities

    Get PDF
    Most research on individual differences in performance on tests of cognitive ability focuses on general cognitive ability (g), the highest level in the three-level Cattell-Horn-Carroll (CHC) hierarchical model of intelligence. About 50% of the variance of g is due to inherited DNA differences (heritability) which increases across development. Much less is known about the genetics of the middle level of the CHC model, which includes 16 broad factors such as fluid reasoning, processing speed, and quantitative knowledge. We provide a meta-analytic review of 863,041 monozygotic-dizygotic twin comparisons from 80 publications for these middle-level factors, which we refer to as specific cognitive abilities (SCA). Twin comparisons were available for 11 of the 16 CHC domains. The average heritability across all SCA is 55%, similar to the heritability of g. However, there is substantial differential heritability and the SCA do not show the dramatic developmental increase in heritability seen for g. We also investigated SCA independent of g (g-corrected SCA, which we refer to as SCA.g). A surprising finding is that SCA.g remain substantially heritable (53% on average), even though 25% of the variance of SCA that covaries with g has been removed. Our review frames expectations for genomic research that will use polygenic scores to predict SCA and SCA.g. Genome-wide association studies of SCA.g are needed to create polygenic scores that can predict SCA profiles of cognitive abilities and disabilities independent of g. These could be used to foster children’s cognitive strengths and minimise their weaknesses

    True Grit and Genetics: Predicting Academic Achievement from Personality

    Get PDF
    Grit -- perseverance and passion for long-term goals -- has been shown to be a significant predictor of academic success, even after controlling for other personality factors. Here, for the first time, we use a UK-representative sample and a genetically sensitive design to unpack the etiology of grit and its prediction of academic achievement in comparison to well-established personality traits. For 4,642 16-year-olds (2,321 twin pairs), we used the Grit-S scale (Perseverance of Effort and Consistency of Interest), along with the Big-5 personality traits, to predict scores on the General Certificate of Secondary Education (GCSE) exams, which are administered UK-wide at the end of compulsory education. Twin analyses of Grit Perseverance yielded a heritability estimate of 37% (20% for Consistency of Interest) and no evidence for shared environmental influence. Personality, primarily Conscientiousness, predicts about 6% of the variance in GCSE scores, but Grit adds little to this prediction. Moreover, multivariate twin analyses showed that roughly two-thirds of the GCSE prediction is mediated genetically. Grit Perseverance of Effort and Big-5 Conscientiousness are to a large extent the same trait both phenotypically (r=0.53) and genetically (genetic correlation = 0. 86). We conclude that the etiology of Grit is highly similar to other personality traits, not only in showing substantial genetic influence but also in showing no influence of shared environmental factors. Personality significantly predicts academic achievement, but Grit adds little phenotypically or genetically to the prediction of academic achievement beyond traditional personality factors, especially Conscientiousness

    Twins Early Development Study: A Genetically Sensitive Investigation into Behavioral and Cognitive Development from Infancy to Emerging Adulthood

    Get PDF
    The Twins Early Development Study (TEDS) is a longitudinal twin study that recruited over 16,000 twin-pairs born between 1994 and 1996 in England and Wales through national birth records. More than 10,000 of these families are still engaged in the study. TEDS was and still is a representative sample of the population in England and Wales. Rich cognitive and emotional/behavioral data have been collected from the twins from infancy to emerging adulthood, with data collection at first contact and at ages 2, 3, 4, 7, 8, 9, 10, 12, 14, 16, 18 and 21, enabling longitudinal genetically sensitive analyses. Data have been collected from the twins themselves, from their parents and teachers, and from the UK National Pupil Database. Genotyped DNA data are available for 10,346 individuals (who are unrelated except for 3320 dizygotic co-twins). TEDS data have contributed to over 400 scientific papers involving more than 140 researchers in 50 research institutions. TEDS offers an outstanding resource for investigating cognitive and behavioral development across childhood and early adulthood and actively fosters scientific collaborations

    Using DNA to predict behaviour problems from preschool to adulthood

    Get PDF
    Background: One goal of the DNA revolution is to predict problems in order to prevent them. We tested here if the prediction of behaviour problems from genome-wide polygenic scores (GPS) can be improved by creating composites across ages and across raters and by using a multi-GPS approach that includes GPS for adult psychiatric disorders as well as for childhood behaviour problems. Method: Our sample included 3,065 genotyped unrelated individuals from the Twins Early Development Study who were assessed longitudinally for hyperactivity, conduct, emotional problems, and peer problems as rated by parents, teachers, and children themselves. GPS created from 15 genome-wide association studies were used separately and jointly to test the prediction of behaviour problems composites (general behaviour problems, externalising, and internalising) across ages (from age 2 to 21) and across raters in penalised regression models. Based on the regression weights, we created multi-trait GPS reflecting the best prediction of behaviour problems. We compared GPS prediction to twin heritability using the same sample and measures. Results: Multi-GPS prediction of behaviour problems increased from <2% of the variance for observed traits to up to 6% for cross-age and cross-rater composites. Twin study estimates of heritability, although to a lesser extent, mirrored patterns of multi-GPS prediction as they increased from <40% to 83%. Conclusions: The ability of GPS to predict behaviour problems can be improved by using multiple GPS, cross-age composites and cross-rater composites, although the effect sizes remain modest, up to 6%. Our approach can be used in any genotyped sample to create multi-trait GPS predictors of behaviour problems that will be more predictive than polygenic scores based on a single age, rater, or GPS
    corecore